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Fig. 3. Absti~de (in A.) und n~ohste Naehbarn. 

gleichm~ssige Ladungsverteflung gewahrt. Dies ist 
in Ubere ins t immung mit  der Tetraederanordnung des 
[SbS4]-a-Komplexions. Die Fig. 3 erl~iutert die Nach- 
barschaft  jedes Atoms der Struktur.  

Herrn  Prof. Machatschki,  der die Arbeit  angeregt hat,  
sind wit f'ur seine Hilfe zu grossem Dank verpflichtet. 
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A Graphical Method of Estimating Absorption Factors for Single Crystals 
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(Received 24 August 1949 and in revised form 23 January 1950) 

An accurate method of estimating absorption factors for oscillation photographs of single crystals of 
constant cross-section is given, the computation being comparatively short for crystals of laxge 
absorbing power. The method is applicable to both zero and non-zero layer lines. I t  is also extended 
to zero-layer-line reflexions in two special cases of crystals of varying cross-section, viz. (1) that of 
a pyramidal form, and (2) that of a needle with its length perpendicular to the rotation axis. 

1. I n t r o d u c t i o n  

The observed in tens i ty  I~k~ of a reflexion from a single 
crystal  is related to the ideal intensity,  In,z, by  

where Ah~z is the absorption factor. I t  is of the form 

Ahkz = f  exp (--/~x) dv 
v V ' 

where # is the absorption coefficient of the crystal  for 
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the X-rays used, x is the optical path in the crystal of 
rays reflected from an element dv, and V is the volume of 
the crystal. Simple approximate methods for computing 
this factor have been used for crystals of low absorbing 
power by Robinson (1933), by l~obertson & White 
(1945) and by Albrecht (1939). Hendershot (1937) 
describes a method, involving considerable computation, 
for crystals of high absorbing power. The method given 
here is accurate and is not long, particularly in the case 
of crystals of high absorbing power bounded by a small 
number of faces. 

marked on it, dividing the cross-section into four areas 
as in Fig. 1. For this reflexion, the angles ¢ and ~r 
marked in the figure have the values ¢1--30.3 ° , 
¢~=21.5 °, ~k1=54.5 ° and ~r9=73.7 °. In area (1), the 
loci of points of constant x are parallel to AB, and in 
area (3) they are parallel to AD. The loci in area (2) make 
intercepts on A B  and AD proportional to sin ¢~ and 
sin ¢~ respectively, whilst those in area (4) make inter- 
cepts on BA and BC proportional to sin ~k 1 and sin ~2 
respectively. The directions of these loci are all marked 
on the drawing as shown. 

8t~ 

(1) . - "  

(4) 

~2 0 

D 0~#" 
b'q 8r 

Fig. 1. Crystal cross-section showing loci for which exp (--#x) is constant .  

2. Crystal of constant cross - sec t ion  

2.1. Zero layer line 

When the cross-section of the crystal, viewed along 
the axis of rotation, is constant, the equation for AhlcZ 
becomes ( e x p  ( - / t x )  ds 

A h k  z = S 

where ds is an elementary area of the cross-section, and 
S is the total  cross-section. When the cross-section is 
bounded by straight lines, the loci of points for which x 
is constant are always straight lines. The method is best 
explained by a sample calculation, that  of the computa- 
tion of A0a s for a crystal of mercury diphenyl, the cross- 
section of which is a rhombus of side 1.60 × 10-~cm., 
and the interracial angles of which are 76 ° and 104 °. For 
cobalt Ka radiation, # is 446 cm.-1 and the Bragg angle is 
47.6 °. A scale drawing of the cross-section is made and 
the directions of the incident and reflected rays are 

Consider an elementary strip in area (1), parallel to 
AB, of width 3h, and distant H from 0. For all points in 
this strip the optical path lies between x and x + 3x. 
Corresponding strips of width 3p, 3q and 8r, distant 
P,  Q and R respectively from O, exist in areas (2), (3) 
and (4). I f  the lengths of these strips are 11, 19, la and 14 
respectively, then their area is 

8s = (ll $h-t- l~ @ +13 3q +14 3r) 

= {11 + l~P/H + 1 a Q/H + 14 R/H} {OE/(AO + OB)} 
× 8x =f(x) $x, 

since 3p=(P/H)3h and OE/(AO+OB)=3h/3x. The 
contribution of these strips to A 03s isf(x) exp (- /zx)  3x/S. 
From the drawing we find that  P/H = 1.01, Q/H= 4.80, 
R/H = 2.70 and OE/(AO + OB) = 0.264. Lengths 11, 12, 13 
and 14 vary linearly with x between certain limits. In 
area (1), 11 varies from A B  = 1.60 x 10 -2 cm. when 
x=O, to 11=0 when x=(AO+OB)=2"13x lO  -2 cm. 
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(by measurement) .  Pu t t ing  this in tabular '  form, we 
have:  

/ 1 0 E  
x l I (AO + OB) 

(cm.) (cm.) (cm.) 

0 1-60 × 10 -2 0.422 × 10 -~ 
2-13 × 10 -2 0 0 

These two points are plotted on a graph of 

IIOE/(A 0 + OB) 

against  x (Fig. 2). The straight  line joining them (line 
(1)) represents the var ia t ion of ltOE/(AO+ OB) with x. 

In  area (2), [~ is at  a m a x i m u m  when it passes through 
_F (Fig. 1). :For this  area, we have: 

l~P OE 
x Z~ H (AO + OB) 

(cm.) (cm.) (cm.) 

0 0 0 
1.9 × 10 -"  0.372 x 10 -"  0.099 x 10 -"  
2.13 × 10 -~" 0 0 

These three points are plotted giving lines (2) in Fig. 2. 
Similarly, lines (3) and (4) are obtained for areas (3) 
and (4). The ordinates of all four curves are added at  
each value of x at  which a discont inui ty appears in any  
of the curves. The resulting ordinates are joined by  
straight  lines which represent the variat ion of f(x) 
with x. For  the first par t  of the curve of f(x) against  
x, fl(x)=mlx-t-Cl, where m 1 and c 1 are constants. The 
contr ibution of this  par t  of the curve to A03 s is 

f x; (mix-~-C1) 
exp (-/~x) dx 

E(~/'/,1 X -'1- ~2,1/],~ -'l-C1)ex ~ ( --  ]-gX)]:i 

,aS 
! n' 

where x z and  x 1 are the abscissae of the ends of this  
s traight  line. F rom the graph, x~ = 0, x~ = 1.61 x 10 -~ cm., 
m z = 0.704/1.61 = 0.437 and c 1 = 0.422 × 10 -~ cm. Sub- 
s t i tut ing these values 

~:fl(x)exp(-/~x)dx=4"69×lO -~. 

It 

As exp (- /~xl)  is negligibly small  in this case, the re- 
mainder  of the graph makes a negligible contribution 
and hence A03 s = 4.69 x 10 -2. For this reflexion, there- 
fore, and f o r m a n y  others, it  is unnecessary to plot more 
t han  the first parts of lines (1), (2) and (4), and it is un- 
necessary to sum the ordinates at  more than  one point, 
i.e. at  x--1-61 × 10 -~ cm. This makes the computat ion 
quite short without  introducing an appreciable error. 
I f  other parts  of the graph have to be used, then  clearly 

Ao~= ~ ; (mrx+er) exp(-#x)dx_s , 
r = l J  Xr 

the  integrat ion being performed in turn  for each of the 
n straight  lines comprising the graph off(x) against  x. 

If  AO < OF (Fig. 1) the m a x i m u m  value of 19. passes 
through O. In  tha t  case, x decreases as area (3) is 

t raversed from left to right. The ratio Q/H cannot then  
be determined directly; the ratio Q/P must  be found 
first. :Point 0 will sometimes lie outside the cross- 
section and then  on]y three areas have to be considered. 

A simple construction for finding the directions of the 
loci in areas (2) and (4) has been pointed out by  Dr D. 
Rogers. Consider area (4). Along OG, produced i f  
necessary, mark  off OT' of length equal to OB. Draw 
T'T parallel to AB to intersect BC, again produced i f  
necessary, in T. Jo in  OT. Then OT is parallel to the  loci 
in area (4). This construction is very quick and ellmi- 
nares the possibili ty of errors in marking  off intercepts 
on the sides. 

2.0 

16 t 

>< 1"0 I(3) 
f(x) 

0"8 

0"6 

0"4 

0-2 

0 ' 
0 0"5 1 "0 1 "5 2"0 2"5 3"0 

x ×10 ~ (cm.) 

Fig. 2. Graph off(x) against x. 

2.2. Non-zero layer lines 
For non-zero lines, the reflected ray  is inclined to the  

cross-section perpendicular  to the rotat ion axis, whilst  
the incident ray  lies in it. Line _FOB in :Fig. 1 now 
represents the projection of the reflected ray  along the 
zone axis (which is not necessarily the rotation axis). I f  
the length of the reflected ray  from any point  in areas 
(1) or (2) is d z and its projection is d'z, then d~=K~d'~, 
where K~ is a constant which is easily determined. In  
area (1) the loci required are, as before, parallel to AB. 
The m a x i m u m  value of x is now (AO+K~OB) and 
3h/3x=OE/(AO+K'IOB ). In  area (2) the loci make  
intercepts proportional to s i n ¢ l  and sin¢2/K ~ re- 
spectively on AB and AD. The m a x i m u m  length of x is 
now K~_FB. Similar relations hold for areas (3) and (4) 

r with some other proport ionali ty constant K2. The re- 
mainder  of the computat ion is performed as for zero- 
layer-line reflexions. 

A similar method can be used for equi-inclination 
Weissenberg photographs, for which both incident  and 
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reflected rays are inclined to the cross-section per- 
pendicular to the rotation axis. 

Work may be saved by drawing the cross-section on 
paper, placing over it a celluloid sheet and marking all 
other lines on the celluloid in '  washable' ink. The cellu- 
loid is easily cleaned with a damp cloth before the next 
computation. 

3. Crystals of varying cross-section 

In special cases, it is possible to compute absorption 
factors fo r  zero-layer-line reflexions from crystals of 
varying cross-section. Two such cases are dealt with 
below; others could be similarly treated. 

3" 1. Pyramidal crystal terminating in a point 

If  the pyramid is regular, the linear dimensions of the 
cross-section distant y from the vertex are proportional 
to y. The graph off(x) against x is constructed for the 
maximum cross-section corresponding to the base of the 
pyramid. The absorption factor is given by 

IyXr/Y (mrx + yC,/ Y) A°~'= V-l f / [r~=l., ~x;,F 
x exp ( - / t x )  dx I dy, 

where Y is the height of the pyramid, V its volume and 
! I !  Xr, Xr, Cr and m~ refer to the graph for the maximum 

cross-section. The explicit expression for A0k z is long 
and the computation tedious unless exp (-#X'~) and 
exp ( - # X : )  are small, in which case the expression is 
much simplified and the computation comparatively 
short. 

3.2. Long needle-shaped crystal 

If  the needle length is perpendicular to the rotation 
axis, A0k z can be computed for all reflexions for which 
the incident and reflected beams pass through the long 
faces of the needle (Fig. 3 (b)). A graph off(x) against x 
is not necessary. The loci of points of constant x are 
parallel to the needle length. Let us suppose that  the 
cross-section perpendicular to the needle length is as 
shown in Fig. 3 (a). Consider a cross-section perpen- 
dicular to the rotation axis. I f  1 is the length of the 
needle which is bathed in X-rays, and h is the distance 
from the crystal edge to an elementary strip of width ah, 
then the contribution of the strip to A0k z is 

I exp (--/tx) ~h/S. 

If  x 1 is the length of an incident ray to the strip and x~ 
the length of the ray reflected from it, then x = x 1 + x~ 

! ! 

and ~x= 3x 1 + ~xg.. If  X1, X~ and H' are the maximum 
values of x 1, xe and h respectively for the cross-section 
considered, then 8h . . . .  =3xlH /X  1 and 3h= -3x~H /X  2, 
and we have 3x = ' ' ' 3h (X1-X~) /H.  Thus the factor for 
this cross-section is 

S_ 1 ~ :~ lexp(-#x)  dxH'  
Jx  ; (x'l-x~) 

In sections (1) and (3) (Fig. 3 (a)), X~, X~ and H' are 
proportional to the distance y of the cross-section from 
the vertex. Thus the contribution to A0k ~ from each of 
sections (1) and (3) is 

V_l; rp,. 
LJ yxdr  (X 1 - X~) dy, 

where V is the volume of the crystal bathed in the X-ray 
beam, and X1, X~ and H are the respective values of 
X~, X'~ and H' for the maximum cross-section. I fZ  is the 

"'a 

I s ~  X-ray beam 

X-ray 
-~, 

I 
! 

Axis of rotation 

(a) (b) 

Fig. 3(a). Cross-section of needle perpendicular to axis of 
needle. (b) Cross-section of needle perpendicular to axis of 
rotation. 

height of section (2), then its contribution to A0k ~ is 

#-1V-11HZ{exp ( - / t X 2 ) - e x  p ( -#X1)} / (X  1 - X2). 

Hence 

LJ yx~/Y (X1-- X~) .J 

+ #-1 V-11 HZ exp ( - #X2) - exp ( - #X 1) 
(X1-  X2) 

This is quite easily evaluated using values of the con- 
stants obtained from measurements on a scale drawing. 
When #X 1 and #X~. are large it reduces to 

Aok ~ = 2lH y /#2 V X1X2. 

The author wishes to thank Dr A. J. C. Wilson for his 
continued interest and encouragement in the work, and 
Dr D. Rogers for a suggestion more fully acknowledged 
in the text. 
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